
Chapter 7 Task Interface Definition

Once tasks in a concurrent design are determined then the subset of data and event

flows exchanged among the tasks can be identified and can then be mapped to specific

communications between pairs of tasks. This goal is accomplished by applying

knowledge about how to define task interfaces. This Task Interface Definition

Knowledge is organized as six, distinct, decision-making processes, shown in Figure 26.

The first decision-making process, Allocate External Interfaces, maps timers, interrupts,

and input and output data from a data/control flow diagram into appropriate interface

elements for each task. The process goes on to identify which event flows and data flows

are exchanged between tasks in the design. The next two decision-making processes,

Allocate Control and Event Flows and Allocate Data Flows, map event flows and data

flows, respectively, to appropriate messages and software signals exchanged between

pairs of tasks. The fourth decision-making process, Elicit Message Priorities, decides

whether to consult with the designer about varying message priorities. The fifth process,

Allocate Queue Interfaces, determines what message queuing mechanisms are

appropriate for any queued messages in the design. The final process simply allows the

designer to review, and, optionally, to assign names to new design elements. The main

182

Fully-Classified
Specification With

All Axioms Satisfied

Evolving Concurrent
Design

Allocate
Control and
Event Flows

8 Rules

Allocate
Data
Flows

12 Rules

Elicit
Message
Priorities

1 Rule

Allocate
Queue

Interfaces

6 Rules

Consider
Renaming

Task Interface
Design Elements

1 Rule

Allocate
External

Interfaces

5 Rules

Task Interface Definition Knowledge
(6 Decision-Making Processes Comprising 33 Rules)

Figure 26. Organization of Task Interface Definition Knowledge

information output from the task-interface definition consists of inter-task messages,

including message data, and any message queue interfaces that are required.

The strategy adopted to define task interfaces begins by examining inputs,

outputs, timers, and interrupts on the data/control flow diagram. Each input and each

output is mapped in the evolving design to data read and written by the appropriate tasks;

timers are mapped to timer expiration events and interrupts are mapped to external events

for the appropriate tasks. The strategy continues by determining the control and event

flows and data flows exchanged between tasks. Subsequently the control and event flows

are mapped to software signals, tightly-coupled messages, or queued messages, as

appropriate. Design-decision rules are used to recognize specific situations where each

type of interface mapping is suitable. In addition, the design-decision rules recognize

when a task interface should be referred to an experienced designer because additional

information is required. If no experienced designer is available, then default decisions

are taken. A similar set of design-decision rules then consider how to map inter-task data

flows to appropriate message interfaces, as either tightly-coupled messages or queued

messages. Once all the inter-task exchanges are mapped to specific message types, an

experienced designer is then given the opportunity to specify differing priorities for

queued messages that are received by any task from multiple sources. If no experienced

designer is available, then all queued messages are maintained at a single priority.

Following the assignment, if any, of priorities to queued messages, the message queuing

facilities of the target environment are analyzed and an appropriate queue interface is

183

defined for each task that receives queued messages. After the mapping of task interfaces

is completed, the designer is offered an opportunity to review the new design elements

and to assign names to each of them. Each decision-making process within the Task

Interface Definition Knowledge base consists of a set of design-decision rules. These

rules are specified below.

7.1 Allocate External Task Interfaces

Five rules compose the process that allocates external task interfaces. Each rule is

specified in turn below.

7.1.1 Rule to Allocate Timer Events

One design-decision rule allocates a timer event for each periodicity1 associated

with each task. The rule associated with timer allocation is derived from a generalization

of the guidance given in the CODARTS design method for allocating timers to periodic

tasks. [Gomaa93, pp. 213-214 and pp. 240-241] The rule is specified as follows.

Rule: Timer Event

if TaskPERIODIC is derived from Solid TransformationST and
Solid TransformationST is the sink for a TimerT and
TimerT has a PeriodP

then if TaskPERIODIC does not already receive an EventTE of type Timer
with an interval equal to PeriodP

then create an EventTE of type Timer with an interval equal to PeriodP

establish the design relationship TaskPERIODIC Accepts EventTE

record the decision and rationale in the design history for EventTE

else use existing EventTE

fi
denote the traceability between TimerT and EventTE

fi

1 Remember that a given task can, where required, operate with different periods
during the execution of a real-time application.

184

An example where this rule applies can be found in the cruise control and

monitoring system case study presented by Gomaa. [Gomaa93, Chapter 22] In the example,

several tasks are derived from periodic functions, including Monitor Auto Sensors,

Perform Calibration, Determine Speed and Distance, Throttle, Check Maintenance

Needed, Monitor Reset Buttons, and Compute Average Mileage. The rule specified

above will generate timer events for each of these tasks.

7.1.2 Rule to Allocate External Events

A similar rule generates an external event for each interrupt that is received by

each task in the evolving design. This rule is derived from the CODARTS guidance for

generating external events based on interrupts that activate an asynchronous task. [Gomaa93,

p. 214] The rule is specified as follows.

Rule: Interrupt

if
TaskASYNCHRONOUS is derived from Interface ObjectIO and
Interface ObjectIO is the sink for an InterruptI

then
create an EventEE of type External
establish the design relationship TaskASYNCHRONOUS Accepts EventEE

record the decision and rationale in the design history for EventEE

denote the traceability between InterruptI and EventEE

fi

An example where this rule applies can be found in the cruise control and

monitoring system case study. In this example, two tasks, Monitor Shaft Rotation and

Monitor Cruise Control Input, each service an asynchronous device. Each of these tasks

185

processes interrupts for the appropriate device. The rule specified above will map these

interrupts to an external event.

7.1.3 Rules for Allocating Data

The two additional task interface rules deal with input and output data, rather than

task activation. Each input from the data/control flow diagram is mapped to a data input

for appropriate tasks, according to the rule below.

Rule: Data Input

if
TaskANY is derived from Interface ObjectIO and
Interface ObjectIO is the sink for an InputI

then
create a DataIN

establish the design relationship TaskANY Reads DataIN

record the decision and rationale in the design history for DataIN

denote the traceability between InputI and DataIN

fi

Similarly, each output from the data/control flow diagram is mapped to a data output for

appropriate tasks, according to the rule below.

Rule: Data Output

if
TaskANY is derived from Interface ObjectIO and
Interface ObjectIO is the source for an OutputO

then
create a DataOUT

establish the design relationship TaskANY Writes DataOUT

record the decision and rationale in the design history for DataOUT

denote the traceability between OutputO and DataOUT

fi

186

These two rules are derived from the general guidance provided by the

CODARTS design method when discussing the integration of tasks and modules for

asynchronous and polled input/output devices. [Gomaa93, pp. 239-242] In some situations, the

designer might choose to combine inputs to or outputs from a task into single inputs or

single outputs. For example, in the cruise control and monitoring system described by

Gomaa, [Gomaa93, Chapter 22] the two inputs, Brake Input and Engine Input, read by the task

Monitor Auto Sensors might be combined into a single input, Sensor Input. In other

situations, such as the elevator control system presented by Gomaa, [Gomaa93, Chapter 23]

multiple inputs from the elevator motor and elevator door should be kept separate. The

approach adopted within the design-decision rules defined in this dissertation is to keep

the separate identities of all inputs to and outputs from tasks.

7.1.4 Rule to Identify Inter-Task Exchanges

One design-decision rule identifies and tags each event flow and data flow

exchanged between tasks in the evolving design. This rule views the event flows and

data flows exchanged among transformations in the light of how those transformations

are allocated to tasks in the evolving design. Given such a view, the event flows and data

flows exchanged between tasks can be identified with ease. The rule is specified below.

187

Rule: Inter-Task Exchange

if
TransformationSENDER is allocated to TaskSENDER and
TransformationRECEIVER is allocated to TaskRECEIVER and
TaskSENDER is not TaskRECEIVER and
TransformationSENDER is not allocated to TaskRECEIVER and
TransformationRECEIVER is not allocated to TaskSENDER and
Directed ArcDA flows from TransformationSENDER to

TransformationRECEIVER and
Directed ArcDA is a Control Event Flow or an Internal Data Flow or a

Signal
then

mark Directed ArcDA as an Inter-Task Exchange
fi

Since this rule only performs a clerical function to facilitate later decision making,

no example is necessary.

7.2 Allocate Control and Event Flows

The second decision-making process considers how to map control and event

flows, that is, dashed, directed arcs, from the data/control flow diagram to inter-task

events or messages. First consideration is given to mapping control and event flows to

inter-task events and then to mapping control and event flows to tightly-coupled or

queued messages. Control and event flows that cannot be mapped to either inter-task

events or messages are referred to an experienced designer to elicit additional information

or, where no experienced designer is available, a default decision maps these control and

event flows to queued messages.

188

7.2.1 Rules for Mapping to Software Events

When a target environment supports software signals between tasks (see Chapter

5 for the minimum assumptions made regarding software signals), control and event

flows can be mapped to inter-task events because no data is transmitted along with them.2

The CODARTS design method identifies three cases where control and event flows

might require mapping to inter-task messages rather than inter-task events. [Gomaa93, pp.

213-217] One case occurs when the source and destination tasks reside on different

processors in a distributed system. Since distributed systems are outside the scope of this

dissertation, this case is not addressed in the design-decision rules. A second case occurs

when a destination task receives several different event flows from the same source task.

A third case occurs when a destination task receives event flows from several different

source tasks and where: 1) events cannot be missed and 2) the order of arrival must be

preserved. The second and third cases are addressed by the design-decision rules that

follow.

The first design-decision rule identifies situations where control flows can be

mapped to inter-task events. In this context, control flows are defined to be those dashed,

directed arcs that emitted from a control object; these can include Triggers, Enables,

Disables, and Signals. The rule, specified below, maps each inter-task control flow to an

inter-task event, unless the number of events flowing between the two tasks exceeds a

2 Whether inter-task event flows have any advantage over inter-task messages
depends on the details of a particular target environment. Where no advantage exists,
inter-task event flows can be factored out of a design through the target environment
description (see Chapter 5).

189

threshold contained in the target environment description or unless the sending task is an

inverted task. Events flowing to an inverted task must identify their source, and thus data

must be included with the event. To send data between tasks a message is necessary.

Rule: Control Flow To Software Event (First Preference)

if
Directed ArcCF flows from a TaskSENDER to a TaskRECEIVER and
Directed ArcCF is a Signal or Control Event Flow and
the source of Directed ArcCF is a Control Object and
TaskSENDER is not inverted and
the number of control flows going from TaskSENDER to

TaskRECEIVER does not exceed the maximum number of
inter-task signals specified in the target environment description

then
if Directed ArcCF is a Disable and an EventIE of type Internal

with the name Disable already exists from TaskSENDER to
TaskRECEIVER

then use existing EventIE

else create an EventIE of type Internal from TaskSENDER to TaskRECEIVER

establish the design relationship TaskSENDER Generates EventIE

establish the design relationship TaskRECEIVER Accepts EventIE

fi
denote the traceability between Directed ArcCF and EventIE

record the decision and rationale in the history for EventIE

fi

An example where this rule might apply appears in a cruise control and

monitoring system discussed by Gomaa. [Gomaa93, Chapter 22] In the example, six control

flows, three enables and three disables, flow from the task Cruise Control to the task Auto

Speed Control. Since each disable simply deactivates the task, the three disables can be

compressed to a single, software signal, and, therefore, the number of control flows

between the tasks can be counted as four. Where the target environment description

190

indicates that the threshold for maximum number of inter-task signals is at least four, the

rule defined above will map these control flows to inter-task signals. Should the

threshold for maximum number of inter-task signals fall below four then the rule defined

above will not map the control flows to inter-task events.

A similar rule is defined for event flows, that is, dashed, directed arcs that are not

control flows, except that an additional factor is considered. If the receiving task receives

event flows from multiple sources, or if the sending task is inverted, then the incoming

event flows are not mapped to inter-task events, except where those event flows are

locked-state events. Locked-state events can be mapped to inter-task events because the

destination task is suspended until the event arrives.

Rule: Event Flow To Software Event (First Preference)

if
SignalEF flows from a TaskSENDER to a TaskRECEIVER and
the source of SignalEF is not a Control Object and
TaskSENDER is not inverted and
(SignalEF is a locked-state event for a Control Object or
 no task other than TaskSENDER sends event flows to TaskRECEIVER) and
the number of event flows going from TaskSENDER to

TaskRECEIVER does not exceed the maximum number of
inter-task signals specified in the target environment description

then
create an EventIE of type Internal from TaskSENDER to TaskRECEIVER
establish the design relationship TaskSENDER Generates EventIE

establish the design relationship TaskRECEIVER Accepts EventIE

denote the traceability between SignalEF and EventIE

record the decision and rationale in the history for EventIE

fi

191

Some examples where this rule might apply appear in a robot controller case

study elaborated by Gomaa. [Gomaa93, Chapter 23] For this discussion assume that the

maximum number of inter-task signals that can be exchanged between tasks is two. In

the robot controller example, two event flows, Resume and Stop, flow from the Robot

Command Processor task to the Axis Manager task. The rule defined above maps these

two events to inter-task signals. Another relevant case appears in the robot controller

example where a single event flow, Ended, flows from the Interpreter task to the Robot

Command Processor task. Since the Robot Command Processor task also receives event

flows from the Control Panel Input Handler, the rule defined above would normally not

map the Ended event to an inter-task signal; however, the Ended event is mapped to an

inter-task signal because the event is a locked-state event for the Control Robot control

object.

192

7.2.2 Rules for Mapping to Tightly-Coupled Messages

After considering possible mappings of control and event flows to inter-task

signals, any control and event flows that could not be mapped can be considered for

mapping to tightly-coupled message interfaces. Two rules are defined. The first rule,

specified below, maps a control flow from a control object onto a tightly-coupled

message.

Rule: Control Flow To Tightly-Coupled Message (Second Preference)

if
TaskSENDER sends a Directed ArcCF to TaskRECEIVER and
Directed ArcCF is a Signal or Control Event Flow and
the source of Directed ArcCF is a Control Object

then
create a Tightly-Coupled MessageCONTROL from TaskSENDER to TaskRECEIVER

establish the design relationship TaskSENDER Sends MessageCONTROL

establish the design relationship TaskRECEIVER Receives MessageCONTROL

denote the traceability between Directed ArcCF and MessageCONTROL

record the decision and rationale in the history for MessageCONTROL

fi

Returning to the cruise control and monitoring system discussed in the preceding

section, assume that the maximum number of inter-task signals is set at two. In this case

the control flows from the Cruise Control task to the Auto Speed Control task would not

be mapped to inter-task signals because their number, four, exceeds the allowed threshold

in the target environment description. Instead, the second-preference rule, defined above,

maps these control flows to a tightly-coupled message.

A similar rule maps locked-state events that could not be mapped to inter-task

events to tightly-coupled messages. This rule is specified below.

193

Rule: Locked-State Event Flow To Tightly-Coupled Message
(Second Preference)

if
TaskSENDER sends a SignalEF to TaskRECEIVER and
TaskRECEIVER is not inverted and
the sink of SignalCF is a Control ObjectCO and
SignalCF is a locked-state event for Control ObjectCO and
the sender of SignalCF sends no other Signals to Control ObjectCO

unless those other Signals are also locked-state events for
Control ObjectCO

then
create a Tightly-Coupled MessageEVENT from TaskSENDER to TaskRECEIVER
establish the design relationship TaskSENDER Sends MessageEVENT

establish the design relationship TaskRECEIVER Receives MessageEVENT

denote the traceability between SignalEF and MessageEVENT

record the decision and rationale in the history for MessageEVENT

fi

An example where this rule might apply can be illustrated by reconsidering the

robot controller case study discussed previously (and covered in depth in Appendix C).

Assume that the target environment description indicates that no inter-task events are

permitted. In this case, the rule defined above would map the Ended event, a locked-state

event for the Control Robot control object, to a tightly-coupled message sent from the

task Interpreter to the task Robot Command Processor.

7.2.3 Rule for Mapping to Queued Messages

In some situations where they cannot be mapped to inter-task events, event flows

might be mapped to queued messages. One specific situation where this mapping can be

made involves events that flow to a control task from a device input task. Device input

tasks should not be delayed waiting for the control task to accept events because input

194

events might occur in quick succession. In general then, events from device input tasks

to control tasks that cannot be mapped to inter-task events should be mapped to queued

messages. An exception to this rule occurs when the events from a device input task

arrive at the control task only when the control task is in a locked-state waiting for those

events. The rule is specified below.

Rule: Input Event To Queued Message (Second Preference)

if
TaskDIT sends a SignalEF to TaskCONTROL and
the sink of SignalEF is a Control ObjectCO and
SignalCF is not a locked-state event for Control ObjectCO and
TaskDIT is a periodic or asynchronous device input task and
TaskCONTROL is a control task and
the source of SignalEF is a Periodic or Asynchronous Device Input Object

then
create a Queued MessageEVENT from TaskDIT to TaskCONTROL
establish the design relationship TaskDIT Sends MessageEVENT

establish the design relationship TaskCONTROL Receives MessageEVENT

denote the traceability between SignalEF and MessageEVENT

record the decision and rationale in the history for MessageEVENT

fi

An example where this rule applies can be found in the cruise control and

monitoring system discussed previously. In the example, the periodic, device-input task

Monitor Auto Sensors sends four event flows to the control task Cruise Control. The rule

specified above maps these event flows onto a queued message from Monitor Auto

Sensors to Cruise Control.

7.2.4 Rule for Mapping Ambiguous Control and Event Flows

As specified to this point, the rules for mapping control and event flows to

inter-task signals or messages recognize several specific situations where a preferred

195

decision can be taken. Any remaining situations cannot be resolved without additional

information, except by taking a default decision. The next rule specified recognizes these

less constrained situations, where events flow between tasks in the design, and refers each

situation to an experienced designer to elicit additional information that might lead to an

appropriate design choice. If an experienced designer is available, then the designer is

asked whether the sender of the event must wait until the message is accepted by the

receiver before the sender can continue, or whether the sender can continue independently

of the receiver accepting the message. Where the sender must wait then the event flow is

mapped to a tightly-coupled message; otherwise, the event flow is mapped to a queued

message. When an experienced designer is not available or where an experienced

designer cannot supply the requested information for a given situation, then the rule maps

event flows to a queued message between tasks. The rule is given last preference so that

rules recognizing more specific situations take precedence. The rule is specified below.

196

Rule: Event Flow To Message (Last Preference)

if
TaskSENDER sends a SignalEF to TaskRECEIVER

then
if an experienced designer is available
then show the designer all event flows from TaskSENDER to TaskRECEIVER

ask the designer whether the sender must wait for the receiver
to accept these events before continuing

if the designer says the sender need not wait or the
designer does not know the answer

then create a Queued MessageEVENT from TaskSENDER to
TaskRECEIVER

establish the design relationship TaskSENDER Sends
MessageEVENT

establish the design relationship TaskRECEIVER Receives
MessageEVENT

denote the traceability between SignalEF and MessageEVENT

record the decision and rationale in the history for
MessageEVENT

else create a Tightly-Coupled MessageEVENT from TaskSENDER to
TaskRECEIVER

establish the design relationship TaskSENDER Sends
MessageEVENT

establish the design relationship TaskRECEIVER Receives
MessageEVENT

denote the traceability between SignalEF and MessageEVENT

record the decision and rationale in the history for
MessageEVENT

fi
else create a Queued MessageEVENT from TaskSENDER to TaskRECEIVER

establish the design relationships TaskSENDER Sends MessageEVENT

and TaskRECEIVER Receives MessageEVENT

denote the traceability between SignalEF and MessageEVENT

record the decision and rationale in the history for MessageEVENT

fi
fi

An example where this rule applies can be drawn from the same cruise control

and monitoring system used previously. An internal task, Auto Speed Control, sends an

197

event, Reached Cruising, to a control task, Cruise Control. Since this event flow does not

correspond to any previously defined situation, no inference maps Reached Cruising to a

specific type of message. This case, then, is referred to an experienced designer or

mapped to a queued message by default when no experienced designer is available.

7.2.5 Rules for Mapping to Existing Messages

The design rules specified in this dissertation assume that all event exchanges

between specific pairs of tasks occur in a uniform manner. So, for example, if a taskA

sends one event to another taskB using a queued message, then all events from taskA to

taskB will be sent using a queued message. This assumption allows specific inferences to

be drawn whenever a mechanism exists to carry any control or event flow between a pair

of tasks. Specifically, once a message interface is defined to carry a control or event flow

from a source task to a destination task then any remaining control and event flows with

the same source and destination can be mapped to the same message interface.

Two rules are specified to perform these mappings. One rule maps control and

event flows onto an existing tightly-coupled message between two tasks. The second rule

maps control and event flows onto an existing queued message between two tasks. These

rules are given first preference because once a specific message interface is defined these

additional mappings can be performed immediately. The rule to map control and event

flows onto an existing tightly-coupled message is specified below.

198

Rule: Ride On Existing Tightly-Coupled Message (First Preference)

if
TaskSENDER sends a Directed ArcEF to TaskRECEIVER and
Directed ArcEF is a Signal or a Trigger or an Enable or a Disable and
TaskSENDER sends a Tightly-Coupled MessageEM to TaskRECEIVER

then
if an appropriate Message DataMD does not exist for MessageEM

then create an appropriate Message DataMD for MessageEM
establish the design relationship MessageEM Includes Message

DataMD

record the decision and rationale in the history for Message DataMD

else use an existing Message DataMD for MessageEM

fi
denote the traceability between Directed ArcEF and Message DataMD

record the decision and rationale in the history for Message DataMD

fi

An example where this rule applies can be found in the cruise control and

monitoring system discussed previously (and covered in depth in Appendix B). In the

example, the task Cruise Control sends a set of control flows to the task Auto Speed

Control. Once any one of these control flows is mapped to a tightly-coupled message

then the rule specified above will map the remaining control flows in the set to the same

tightly-coupled message. The identity of the individual control flows is not lost; each

control flow can be distinguished using a data field created for the tightly-coupled

message. A similar rule, specified below, maps multiple event flows onto an existing

queued message interface for a specific source task and destination task.

199

Rule: Ride On Existing Queued Message (First Preference)

if
TaskSENDER sends a SignalEF to TaskRECEIVER and
TaskSENDER sends a Queued MessageEM to TaskRECEIVER

then
if an appropriate Message DataMD does not exist for MessageEM

then create an appropriate Message DataMD for MessageEM

establish the design relationship MessageEM Includes Message
DataMD

record the decision and rationale in the history for Message DataMD

else use an existing Message DataMD for MessageEM

fi
denote the traceability between SignalEF and Message DataMD

record the decision and rationale in the history for Message DataMD

fi

This rule applies in the same cruise control and monitoring system where a task,

Monitor Auto Sensors, sends four event flows to the Cruise Control task. Once one of

these event flows is mapped by another rule to a queued message, then the rule defined

above will map the other three event flows onto the same queued message.

7.3 Allocate Data Flows

The third decision-making process within the Task Interface Definition

Knowledge base considers how each inter-task data flow in an evolving design should be

mapped to a message interface. The approach adopted is similar to the approach taken

when mapping control and event flows. First, when specific situations can be recognized

where a particular mapping, either to a tightly-coupled or queued message, appears

appropriate then a rule is defined. Second, when a situation is ambiguous then an

experienced designer is consulted, where possible, and a default decision is taken when

no experienced designer is available. Third, once a specific message type is defined for a

200

particular source task and destination task then all data flows with the same source and

destination are mapped onto that message. The design-decision rules are specified and

explained below.

7.3.1 Rules for Mapping to Tightly-Coupled Messages

Two specific situations call for mapping a data flow onto a tightly-coupled

message. The first situation occurs when a function within a task receives a data flow

from a transformation outside that task and the receiving function generates signals for a

control object within the receiving task and all the signals generated by the receiving

function are locked-state events for the control object. This rule is specified below.

Rule: Stimulus For Locked-State Event (Second Preference)

if
a FunctionF in TaskRECEIVER receives a StimulusDF from a TaskSENDER and
FunctionF sends a SignalEF to Control ObjectCO and
SignalEF is a locked-state event for Control ObjectCO and
TaskRECEIVER is not inverted

then
create a Tightly-Coupled MessageEM from TaskSENDER to TaskRECEIVER

establish the design relationship TaskSENDER Sends MessageEM

establish the design relationship TaskRECEIVER Receives MessageEM

denote the traceability between StimulusDF and MessageEM

record the decision and rationale in the history for MessageEM

create an appropriate Message DataMD for MessageEM

establish the design relationship MessageEM Includes Message DataMD

denote the traceability between StimulusDF and Message DataMD

record the decision and rationale in the history for Message DataMD

fi

An example where this rule applies can be found in the elevator control system

case study discussed previously (and covered in depth in Appendix D). In the example, a

201

function, Check This Floor, inside the task Elevator Controller receives a data flow, Floor

Number, from the task Monitor Arrival Sensors. Check This Floor generates one event,

Approaching Requested Floor, that arrives when the control object, Elevator Control, is

in a locked-state waiting for that event. Thus, the data flow, Floor Number, will only

arrive when the receiving task is awaiting it, so the data flow can be mapped to a

tightly-coupled message.

The second situation where a data flow can be mapped to a tightly-coupled

message occurs when the data flow is a response. By definition the definition of a

Response (see Chapter 4), the receiver of a response is waiting for it and, so, the sender

will not be delayed.

Rule: Response To Tightly-Coupled Message (Fourth Preference)

if
TaskSENDER sends a ResponseR to TaskRECEIVER and
the sink of ResponseR is the source of a StimulusDF and
StimulusDF is allocated to a MessageREQUEST

then
create a Tightly-Coupled MessageREPLY from TaskSENDER to TaskRECEIVER

establish the design relationship TaskSENDER Sends MessageREPLY

establish the design relationship TaskRECEIVER Receives MessageREPLY
establish the design relationship MessageREPLY Answers MessageREQUEST

denote the traceability between ResponseR and MessageREPLY

record the decision and rationale in the history for MessageREPLY

create an appropriate Message DataMD for MessageREPLY

establish the design relationship MessageREPLY Includes Message DataMD

denote the traceability between ResponseR and Message DataMD

record the decision and rationale in the history for Message DataMD

fi

202

An example where this rule applies can be found in a distributed factory

automation system described by Gomaa. [Gomaa93, Chapter 25] In the example, a

transformation, Production Management, sends a data flow, Process Plan Request, to a

transformation, Process Planning, which responds with a data flow, Process Plan

Information. Process Plan Information, being classified as a response, would be mapped

by the rule specified above to a tightly-coupled message.

7.3.2 Rules for Mapping to Queued Messages

Several specific situations call for mapping a data flow to a queued message. One

such situation occurs whenever an data flow is sent to a resource-monitor task or to a

control task. A design-decision rule for this situation is specified below.

Rule: Stimulus To Resource-Monitor Or Control Task (Third Preference)

if
TaskSENDER sends a StimulusDF to TaskRECEIVER and
TaskRECEIVER is a resource-monitor or control task

then
if a MessageDFM does not already exist from TaskSENDER to

TaskRECEIVER

then create a Queued MessageDFM from TaskSENDER to TaskRECEIVER

establish the design relationship TaskSENDER Sends MessageDFM

establish the design relationship TaskRECEIVER Receives MessageDFM
denote the traceability between StimulusDF and MessageDFM

record the decision and rationale in the history for MessageDFM

create an appropriate Message DataMD for MessageDFM

establish the design relationship MessageDFM Includes Message
DataMD

denote the traceability between StimulusDF and Message DataMD

record the decision and rationale in the history for Message DataMD

else
denote the traceability between StimulusDF and MessageDFM

fi
fi

203

An example where this rule applies appears in the elevator control system case

study presented by Gomaa. [Gomaa93, Chapter 24] In the example, two resource-monitor

tasks, Floor Lamps Monitor and Direction Lamps Monitor, receive data flows from

multiple instances of an Elevator Controller task. The rule specified above maps these

data flows onto queued messages.

Another situation where data flows between tasks should be mapped to queued

messages occurs when the data flows originate from a periodic or asynchronous device

input task. In general, the sending task should not be held up waiting for the recipient to

accept the data or a subsequent input might be missed. A rule for this situation is

specified below

Rule: Stimulus From Device Input Task (Third Preference)

if
TaskDIT sends a StimulusDF to TaskRECEIVER and
TaskDIT is a periodic or an asynchronous device input task

then
if a MessageDFM does not already exist from TaskDIT to TaskRECEIVER

then create a Queued MessageDFM from TaskDIT to TaskRECEIVER

establish the design relationship TaskDIT Sends MessageDFM

establish the design relationship TaskRECEIVER Receives MessageDFM
denote the traceability between StimulusDF and MessageDFM

record the decision and rationale in the history for MessageDFM

create an appropriate Message DataMD for MessageDFM

establish the design relationship MessageDFM Includes Message
DataMD

denote the traceability between StimulusDF and Message DataMD

record the decision and rationale in the history for Message DataMD

else
denote the traceability between StimulusDF and MessageDFM

fi
fi

204

An example where this rule applies can be found in the elevator control system

case study referred to previously. In the example, an asynchronous device input task,

Monitor Floor Buttons, sends a data flow, Service Request, to an internal task, Scheduler.

The rule specified above maps this data flow onto a queued message.

A third situation where data flows can be mapped to queued messages arises when

a task receives only data flows that are classified as stimuli, but where the task receives

such data flows from multiple sources. This condition is represented as a predicate in the

following rule. A precise definition of the predicate is given below.

Predicate Definition: receives only Stimuli from multiple sending tasks

construct the SetSENDERS of tasks such that each member TaskT sends a
Stimulus to TaskRECEIVER and TaskRECEIVER does not Accept an
Event Generated by TaskT and TaskRECEIVER does not already Receive a
Message Sent by TaskT

if the total cardinality over all members in SetSENDERS exceeds one
then return TRUE
else return FALSE
fi

A task that satisfies this predicate is a server task, that is a task that receives data

flows from several clients or sources and that handles each data flow in turn. Tasks from

which control and event flows are received are excluded from the predicate because such

tasks probably have a more complex relationship with the receiving task than that

exhibited by a simple client. This more complex relationship might be better handled by

some other rule or might warrant referring the interface to an experienced designer. The

rule specified to recognize client-server interfaces between tasks is specified below.

205

Rule: Receives Only Stimuli From Multiple Sources (Third Preference)

if
TaskSENDER sends a StimulusDF to TaskRECEIVER and
TaskRECEIVER receives only Stimuli from multiple sending tasks

then
create a Queued MessageREQUEST from TaskSENDER to TaskRECEIVER

establish the design relationship TaskSENDER Sends MessageREQUEST

establish the design relationship TaskRECEIVER Receives MessageREQUEST
denote the traceability between StimulusDF and MessageREQUEST

record the decision and rationale in the history for MessageREQUEST

create an appropriate Message DataMD for MessageREQUEST

establish the design relationship MessageREQUEST Includes Message DataMD

denote the traceability between StimulusDF and Message DataMD

record the decision and rationale in the history for Message DataMD

fi

 An example where this rule applies can be found in the elevator control system

case study discussed previously. An internal task, Scheduler, sends a data flow,

Scheduler Request, to another internal task, Elevator Manager. Elevator Manager

receives only data flows from two tasks, Scheduler and Monitor Elevator Buttons. The

rule defined above maps the data flow, Scheduler Request, to a queued message.

7.3.3 Rule for Mapping Ambiguous Data Flows

Ambiguous situations involving inter-task data flows are referred to an

experienced designer to elicit additional information. Where an experienced designer is

unavailable or unable to supply any additional insight, ambiguous data flows are mapped

to queued messages. The rule for these situations is specified below.

206

Rule: Stimulus To Message (Last Preference)

if
TaskSENDER sends a StimulusDF to TaskRECEIVER

then
if an experienced designer is available
then show the designer all Stimuli from TaskSENDER to TaskRECEIVER

ask the designer whether the sender must wait for the receiver
to accept these Stimuli before continuing

if the designer says the sender need not wait or the
designer does not know the answer

then create a Queued MessageDM from TaskSENDER to
TaskRECEIVER

establish the design relationship TaskSENDER Sends
MessageDM

establish the design relationship TaskRECEIVER Receives
MessageDM

denote the traceability between StimulusDF and MessageDM

record the decision and rationale in the history for
MessageDM

else create a Tightly-Coupled MessageDM from TaskSENDER to
TaskRECEIVER

establish the design relationship TaskSENDER Sends
MessageDM

establish the design relationship TaskRECEIVER Receives
MessageDM

denote the traceability between StimulusDF and MessageDM

record the decision and rationale in the history for
MessageDM

fi
else create a Queued MessageDM from TaskSENDER to TaskRECEIVER

establish the design relationship TaskSENDER Sends MessageEM

establish the design relationship TaskRECEIVER Receives MessageEM

denote the traceability between StimulusDF and MessageDM

record the decision and rationale in the history for MessageDM

fi
fi

207

A situation where this rule applies can be found in the cruise control and

monitoring system used in previous examples. In this case, a task, Auto Speed Control,

sends three data flows, all called Throttle Value, to the task Throttle. No inference can be

drawn about this task interface, so an experienced designer will be consulted, if possible;

otherwise, these data flows are mapped to a queued message.

7.3.4 Rules for Mapping to Existing Messages

The design rules specified in this dissertation assume that all data flow exchanges

between specific pairs of tasks occur in a uniform manner. So, for example, if a taskA

sends one data flow to another taskB using a queued message, then all data flows from

taskA to taskB will be sent using a queued message. This assumption allows specific

inferences to be drawn whenever a mechanism exists to carry any data flow between a

pair of tasks. Specifically, once a message interface is defined to carry a data flow from a

source task to a destination task then any remaining data flows with the same source and

destination can be mapped to the same message interface.

Four rules are specified to perform these mappings. One rule maps data flows

onto an existing queued message between two tasks, provided that the existing queued

message carries at least one data flow. The second rule maps data flows onto an existing

tightly-coupled message between two tasks, provided that the existing tightly-coupled

message carries at least one data flow. The third rule maps responses onto an existing

tightly-coupled message between two tasks, provided that the existing tightly-coupled

message carries at least one response. The fourth rule maps data flows from a source task

208

to triggered synchronous functions within a control task onto the same message from that

source task that carries events destined for the control task. The rule to map data flows

onto an existing queued message is specified below.

Rule: Stimulus Rides On Existing Queued Message (First Preference)

if
TaskSENDER sends a StimulusDF to TaskRECEIVER and
TaskSENDER sends a Queued MessageQM to TaskRECEIVER and
MessageQM is derived from a Stimulus

then
if an appropriate Message DataMD does not exist for MessageQM

then create an appropriate Message DataMD for MessageQM

establish the design relationship MessageQM Includes Message
DataMD

record the decision and rationale in the history for Message DataMD

else use an existing Message DataMD for MessageQM

fi
denote the traceability between StimulusDF and Message DataMD

record the decision and rationale in the history for Message DataMD

if the traceability between StimulusDF and MessageQM is not already
noted

then denote the traceability between StimulusDF and MessageQM

record the decision and rationale in the history for MessageQM

fi
fi

The application of this rule can best be illustrated together with the application of

a similar rule, specified below, that maps a data flow onto an existing tightly-coupled

message that already carries a data flow between two tasks.

209

Rule: Stimulus Rides On Existing Tightly-Coupled Message (First Preference)

if
TaskSENDER sends a StimulusDF to TaskRECEIVER and
TaskSENDER sends a Tightly-Coupled MessageTCM to TaskRECEIVER and
MessageTCM is derived from a Stimulus

then
if an appropriate Message DataMD does not exist for MessageTCM

then create an appropriate Message DataMD for MessageTCM

establish the design relationship MessageTCM Includes Message
DataMD

record the decision and rationale in the history for Message DataMD

else use an existing Message DataMD for MessageQM

fi
denote the traceability between StimulusDF and Message DataMD

record the decision and rationale in the history for Message DataMD

if the traceability between StimulusDF and MessageTCM is not already
noted

then denote the traceability between StimulusDF and MessageTCM

record the decision and rationale in the history for MessageTCM

fi
fi

An example occurs in the cruise control and monitoring system, discussed

previously, where either of the two rules defined above might apply. In the example, the

task Auto Speed Control sends three data flows, all named Throttle Value, to the task

Throttle. The type of interface needed between these two tasks might be determined after

consulting an experienced designer or by a default decision. The interface could be

mapped to either a queued message or a tightly-coupled message. If one of the three data

flows is mapped to a queued message, then the first of the two rules specified above

would map the remaining two data flows to the same message. If, on the other hand, one

of the data flows becomes mapped to a tightly-coupled message, then the second of the

210

two rules would map the remaining two data flows to the same tightly-coupled message.

A similar rule, specified below, exists to handle redundant responses between tasks.

Rule: Response Rides On Existing Tightly-Coupled Message (First Preference)

if
TaskSENDER sends a ResponseR to TaskRECEIVER and
TaskSENDER sends a Tightly-Coupled MessageTCM to TaskRECEIVER and
MessageTCM is derived from a Response

then
if an appropriate Message DataMD does not exist for MessageTCM

then create an appropriate Message DataMD for MessageTCM

establish the design relationship MessageTCM Includes Message
DataMD

record the decision and rationale in the history for Message DataMD

else use an existing Message DataMD for MessageQM

fi
denote the traceability between ResponseR and Message DataMD

record the decision and rationale in the history for Message DataMD

if the traceability between ResponseR and MessageTCM is not already
noted

then denote the traceability between ResponseR and MessageTCM

record the decision and rationale in the history for MessageTCM

fi
fi

A special circumstance exists when a task sends event flows to a control task and

also sends data flows to that control task. Since control objects cannot accept data flows,

data is sometimes sent to a control task as a data flow to a synchronous function triggered

by the control object. In such situations, the data flow from the sending task should ride

on the same message as the event flows from the sending task. The rule specified below

recognizes and acts upon such situations.

211

Rule: Stimulus To Control Task Rides With Events (Second Preference)

if
TaskSENDER sends a StimulusDF to TaskRECEIVER and
TaskSENDER sends a MessageEM to TaskRECEIVER and
the sink for StimulusDF is a Triggered Synchronous Function

then
create an appropriate Message DataMD for MessageEM

establish the design relationship MessageEM Includes Message DataMD

denote the traceability between StimulusDF and Message DataMD

record the decision and rationale in the history for Message DataMD
denote the traceability between StimulusDF and MessageEM

record the decision and rationale in the history for MessageEM
fi

An example where this rule applies can be found in the robot controller case study

used previously. In the example, a data flow, Program Number, from the task Control

Panel Input Handler goes to a triggered synchronous function, Change Program, within

the control task Robot Command Processor. The rule specified above maps the data

flow, Program Number, to the message, defined earlier by another rule, that carries the

events from the task Control Panel Input Handler to the control task Robot Command

Processor.

7.3.5 Rule for Symmetric Message Interfaces

A special rule is defined based upon the assumption that data flows exchanged

between a pair of tasks, where the data flow in one direction is already allocated to a

message, can typically be mapped to a symmetric interface. This assumption means that

if data flows in one direction are mapped to a queued message, then data flows in the

reverse direction can also be mapped to a queued message. Similarly, if data flows in one

direction are mapped to a tightly-coupled message, then data flows in the reverse

212

direction can also be mapped to a tightly-coupled message. Asymmetric message

interfaces with respect to data flows are assumed then to apply only when one data flow

is sent in response to another. The rule to map a data flow in one direction to the same

type of message as exists in the reverse direction is specified below.

Rule: Stimulus For Reverse Channel (Second Preference)

if
TaskSENDER sends a StimulusDF to TaskRECEIVER and
TaskRECEIVER sends a MessageRtoS to TaskSENDER and
MessageRtoS is derived from an Internal Data Flow

then
determine the type of MessageRtoS and then create a MessageStoR of

the same type from TaskSENDER to TaskRECEIVER

establish the design relationship TaskSENDER Sends MessageStoR

establish the design relationship TaskRECEIVER Receives MessageStoR
denote the traceability between StimulusDF and MessageStoR

record the decision and rationale in the history for MessageStoR

create an appropriate Message DataMD for MessageREQUEST

establish the design relationship MessageREQUEST Includes Message DataMD

denote the traceability between StimulusDF and Message DataMD

record the decision and rationale in the history for Message DataMD

fi

An example where this rule applies can be found in the robot controller case study

discussed previously. In the example, the data flow Motion Blocks is sent from the task

Interpreter to the task Axis Manager and the data flow Motion Acknowledgments is sent

from the task Axis Manager to the task Interpreter. These data flows are sent

independently of each other. Assuming that the data flow Motion Blocks becomes

mapped to a queued message then the rule specified above will also map the data flow

213

Motion Acknowledgments to a queued message going in the opposite direction. This

mapping occurs without consulting the designer.

7.3.6 Rule for Ambiguous Interface to Input/Output Devices

An ambiguity can arise when a task both sends and receives a tightly-coupled

message to a device input/output task. Typically, one of these tightly-coupled messages

is sent in response to the other; however, in cases where neither of the tightly-coupled

messages is derived from a data flow sent in response to another data flow, no means

exist to infer which, if either, tightly-coupled message is the request and which is the

response. A rule is defined to recognize such situations and to refer them to an

experienced designer for a determination. If no experienced designer is available, or if

the experienced designer is unsure about the relationship between the messages, then the

message flowing from the device input/output task is mapped, by default, as an answer to

the message flowing to the device input/output task. This default mapping is considered

most likely to apply in situations involving interfaces to device input/output tasks.

An example where this situation might arise can be found in the robot controller

case study. In the example, the device input/output task receives a data flow, Axis Block,

from the internal task Axis Manager and sends a data flow, Axis Acknowledgment, to

Axis Manager. Assume that the designer chooses to map Axis Block onto a

tightly-coupled message, and that the symmetric interface rule mapped Axis

Acknowledgment onto a tightly-coupled message. The rule specified below would detect

this possible ambiguity and either consult an experienced designer or make a default

214

decision that the message carrying Axis Acknowledgment answers the message carrying

Axis Block.

Rule: Finding Request And Response (Last Preference)

if
TaskIO is a periodic or an asynchronous device input/output task and
TaskANY is any task other than TaskIO and
Tightly-Coupled MessageOUT flows from TaskANY to TaskIO and
Tightly-Coupled MessageIN flows from TaskIO to TaskANY

then
if an experienced designer is available
then ask the designer whether:

1) MessageIN Answers MessageOUT or
2) MessageOUT Answers MessageIN or
3) Neither Answers the other or
4) the designer is unsure about the relationship

if the designer chooses the first or fourth options
then establish the design relationship MessageIN Answers

MessageOUT

record the decision and rationale in the history for
MessageIN

else if the designer chooses option two
 then establish the design relationship MessageOUT

Answers MessageIN

 record the decision and rationale in the
history for MessageOUT

 fi
fi

else establish the design relationship MessageIN Answers
MessageOUT

record the decision and rationale in the history for
MessageIN

fi
fi

215

7.4 Elicit Message Priorities

When a task receives queued messages from multiple sources a designer might

wish to give priorities to the inputs from each source based upon requirements of the

application. Since no means exist to infer these priorities, an experienced designer must

be consulted to elicit them. The rule specified below detects situations where such

elicitation might be appropriate and then manages the elicitation process.

Rule: User Specifies Queued Message Priority

if
an experienced designer is available and
any task receives queued messages from multiple sending tasks

then
offer the designer a chance to review and optionally to alter the priority of
queued messages received by each task that receives queued
messages from multiple sending tasks
if the designer accepts the offer
then for each task in the design that receives queued messages from

multiple senders
show the designer the SetQM of queued messages received

by the task, as well as the priority of each message
offer the designer a chance to assign a new priority to any

of the messages in the SetQM

update the priority of each member of SetQM as indicated
by the designer

rof
fi

fi

Regarding the case studies used to illustrate previous rules, both the cruise control

and monitoring system and the elevator control system lead to task interfaces where

differing priorities might be assigned to queued messages. In the former case, the task

Cruise Control receives queued messages from three other tasks, Monitor Auto Sensors,

216

Monitor Cruise Control Inputs, and Auto Speed Control. An experienced designer might

choose to assign a higher priority to messages from Monitor Auto Sensors than to

messages from the other input tasks. In the case of the elevator control system, the task

Elevator Manager receives queued messages from two tasks, Scheduler and Monitor

Elevator Buttons. An experienced designer might choose to assign greater precedence to

messages received from the Scheduler task.

7.5 Allocate Queue Interfaces

The fifth decision-making process, Allocate Queue Interfaces, compares the

requirements for queued messages in the evolving design with the message queuing

facilities available in the target environment. The issues considered during this

decision-making process occur within environments, such as the Ada run-time system,

where message queuing facilities are not available. More generally, one can imagine

target environments that support only single-priority message queues, those that support

only multiple-priority message queues, those that support both, and those that support

neither. Design-decision rules are specified for each of the relevant situations. Guidance

for handling environments where no message queuing facilities exist is taken from the

Ada-based Design Approach for Real-Time Systems (ADARTS) described by Gomaa.

[Gomaa93, Chapter 17] In such cases, an intermediary queue-control task is constructed to

manage an internal message list. The interfaces between the intermediary task and the

message senders and receivers is mapped to tightly-coupled messages.

217

7.5.1 Rules for Single-Priority Message Queues

Three rules are defined to consider cases where a task receives queued messages

at only one priority. The first of these rules recognizes when message queues are

available in the target environment and then creates an incoming queue for the receiving

task and maps each queued message received by the task into the newly created queue.

The rule is specified below.

Rule: Single Priority Message Queue Available

if
TaskRECEIVER receives queued messages at a single priority and
message queues are available in the target environment

then
create a QueueRQ for TaskRECEIVER

establish the design relationship TaskRECEIVER Consumes QueueRQ

record the decision and rationale in the history for QueueRQ

for each Queued MessageQM to TaskRECEIVER

establish the design relationship QueueRQ Holds MessageQM

record the decision and rationale in the history for QueueRQ

rof
fi

This rule applies in all of Gomaa’s case studies, discussed to this point. As

described by Gomaa, the case studies each have at least one message queue, all queued

messages arrive at a single priority, and message queuing is available in the target

environment.

The second rule recognizes that a single priority message queue is required but

that only priority message queuing services are supported by the target environment. In

218

such cases, the rule creates a priority queue for the receiving task and then maps each

incoming message into a single priority slot in the queue. The effect simulates a

single-priority message queue. The rule is specified below.

Rule: Single Priority Only Priority Queues Available

if
TaskRECEIVER receives queued messages at a single priority and
priority queues are available in the target environment and
message queues are unavailable in the target environment

then
create a Priority QueuePQ for TaskRECEIVER

establish the design relationship TaskRECEIVER Owns QueuePQ

record the decision and rationale in the history for QueuePQ

create a QueueSQ as a subqueue for QueuePQ

establish the design relationship QueuePQ Heads QueueSQ

record the decision and rationale in the history for QueueSQ

for each Queued MessageQM to TaskRECEIVER

establish the design relationship QueueSQ Holds MessageQM

record the decision and rationale in the history for QueueSQ

rof
fi

A third rule recognizes that message queues are required for a task but that no

message queuing services of any kind are available in the target environment. In such

cases, the rule creates a queue-control task for the receiving task and encapsulates a queue

within the queue-control task. A tightly-coupled message is defined from the receiving

task to the queue-control task in order to request the next available message from the

internal queue of the queue-control task. A tightly-coupled message is defined from the

queue-control task to the receiving task to return the next available message to the

219

receiving task. When no message is available in the internal queue of the queue-control

task then the receiving task blocks until a message is available. The rule is specified

below.

Rule: Single Priority No Queues Available

if
TaskRECEIVER receives queued messages at a single priority and
priority queues are unavailable in the target environment and
message queues are unavailable in the target environment

then
create a queue control TaskQC for TaskRECEIVER

record the decision and rationale in the design history for TaskQC

create a QueueRQ for TaskRECEIVER

establish the design relationship TaskQC Encapsulates QueueRQ

record the decision and design rationale in the design history for TaskQC

create a Tightly-Coupled MessageRFNM from TaskRECEIVER to TaskQC

establish the design relationship TaskRECEIVER Sends MessageRFNM

establish the design relationship TaskQC Receives MessageRFNM

record the decision and rationale in the history for MessageRFNM

create a Tightly-Coupled MessageNMA from TaskQC to TaskRECEIVER

establish the design relationship TaskQC Sends MessageNMA

establish the design relationship TaskRECEIVER Receives MessageNMA

record the decision and rationale in the history for MessageNMA

establish the design relationship MessageNMA Answers MessageRFNM

for each Queued MessageQM received by TaskRECEIVER

establish the design relationship QueueRQ Holds MessageQM

record the decision and rationale in the history for QueueRQ
establish the design relationship MessageNMA Carries MessageQM

record the decision and rationale in the history for MessageNMA

create a Tightly-Coupled MessageSUBMIT from the TaskSENDER,
where TaskSENDER sends MessageQM to TaskQC

establish the design relationship MessageSUBMIT Carries MessageQM

record the decision and rationale in the history for MessageSUBMIT

establish the design relationship TaskSENDER Sends MessageSUBMIT

establish the design relationship TaskQC Receives MessageSUBMIT

remove all design relationships Send and Receive involving
MessageQM

rof
fi

220

Note also that a tightly-coupled message is created from each sending task to the

queue-control task. These tightly-coupled messages are used to submit queued messages

to the queue-control task for later delivery to the receiving task. Each queued message to

be delivered is carried within a tightly-coupled message.

7.5.2 Rules For Multiple-Priority Message Queues

Three additional rules are defined to consider cases where a task receives queued

messages at multiple priorities. The first of these rules, specified below, recognizes when

priority message queues are available in the target environment and then creates an

incoming priority queue for the receiving task.

Rule: Multiple Priority Priority Queues Available

if
TaskRECEIVER receives queued messages at multiple priorities and
priority queues are available in the target environment

then
create a Priority QueuePQ for TaskRECEIVER

establish the design relationship TaskRECEIVER Owns QueuePQ

record the design decision and rationale in the design history for QueuePQ

construct the SetPRIORITIES of priorities at which TaskRECEIVER receives
queued messages

for each PriorityP in SetPRIORITIES

create a QueueSQ as a subqueue for QueuePQ

establish the design relationship QueuePQ Heads QueueSQ

record the decision and rationale in the history for QueuePQ

for each Queued MessageQM with PriorityP to TaskRECEIVER

establish the design relationship QueueSQ Holds MessageQM

record the decision and rationale in the history for QueueSQ

rof
rof

fi

221

A subqueue is created for each priority at which queued messages are received by the

receiving task. Incoming queued messages are mapped into the appropriate subqueue

based on priority.

A second rule, specified below, recognizes that priority queues are not available in

the target environment but that single-priority message queues are available.

Rule: Multiple Priority Only Message Queues Available

if
TaskRECEIVER receives queued messages at multiple priorities and
priority queues are unavailable in the target environment and
message queues are available in the target environment

then
construct the SetPRIORITIES of priorities at which TaskRECEIVER receives

queued messages
for each PriorityP in SetPRIORITIES

create a QueueRQ for TaskRECEIVER

establish the design relationship TaskRECEIVER Consumes QueueRQ

record the decision and rationale in the history for QueueRQ

for each Queued MessageQM with PriorityP to TaskRECEIVER

establish the design relationship QueueRQ Holds MessageQM

record the decision and rationale in the history for QueueRQ

rof
rof

fi

This rule simulates priority queues by creating a message queue for each priority at which

queued messages arrive at the receiving task. Incoming queued messages are mapped to

the appropriate queue based on priority.

A third rule recognizes that neither priority queues nor single-priority message

queues are available in the target environment. This rule is specified below.

222

Rule: Multiple Priority No Queues Available

if
TaskRECEIVER receives queued messages at multiple priorities and
priority queues are unavailable in the target environment and
message queues are unavailable in the target environment

then
create a queue control TaskQC for TaskRECEIVER

record the decision and rationale in the design history for TaskQC

create a Priority QueuePQ for TaskRECEIVER

establish the design relationship TaskQC Encloses QueueRQ

record the decision and design rationale in the history for TaskQC

create a Tightly-Coupled MessageRFNM from TaskRECEIVER to TaskQC

establish the design relationship TaskRECEIVER Sends MessageRFNM

establish the design relationship TaskQC Receives MessageRFNM

record the decision and design rationale in the history for MessageRFNM

create a Tightly-Coupled MessageNM from TaskQC to TaskRECEIVER

establish the design relationship TaskQC Sends MessageNM

establish the design relationship TaskRECEIVER Receives MessageNM

record the decision and design rationale in the history for MessageNM

establish the design relationship MessageNM Answers MessageRFNM
construct the SetPRIORITIES of priorities at which TaskRECEIVER receives

queued messages
for each PriorityP in SetPRIORITIES

 create a QueueSQ as a subqueue for QueuePQ

 establish the design relationship QueuePQ Heads QueueSQ

 record the decision and design rationale in the history for QueuePQ

 for each Queued MessageQM received by TaskRECEIVER

 establish the design relationship QueueSQ Holds MessageQM

 record the decision and design rationale in the history for QueueSQ
 establish the design relationship MessageNM Carries MessageQM

 record the decision and design rationale in the history for MessageNM

 create a Tightly-Coupled MessageSUB from the TaskS, where TaskS
sends MessageQM to TaskQC

 establish the design relationship MessageSUB Carries MessageQM

 record the decision and design rationale in the history for MessageSUB

 establish the design relationship TaskSENDER Sends MessageSUB

 establish the design relationship TaskQC Receives MessageSUB

 remove all design Sends and Receives involving MessageQM

 rof
rof

fi

223

This rule creates a queue-control task for the receiving task and encloses a priority

queue within the queue-control task. A tightly-coupled message is defined from the

receiving task to the queue-control task in order to request the next available message

from the internal queue of the queue-control task. A tightly-coupled message is defined

from the queue-control task to the receiving task to return the next available message to

the receiving task. When messages are available at multiple priorities, the queue-control

task returns the oldest message of the highest priority. When no message is available in

the internal queue of the queue-control task then the receiving task blocks until a message

is available. Note also that a tightly-coupled message is created from each sending task

to the queue-control task. These tightly-coupled messages are used to submit queued

messages to the queue-control task for later delivery to the receiving task. Each queued

message to be delivered is carried within a tightly-coupled message.

 7.6 Consider Renaming Task Interface Design Elements

The final decision-making process, among those contained within the Task

Interface Definition Knowledge base, offers the designer an opportunity to review the

new design elements created. If the designer is dissatisfied with the results, then the

results can be discarded. In addition, the designer is given an opportunity to rename

design elements, which might include: queue-control tasks, single-priority and

multiple-priority message queues, queued and tightly-coupled messages, and message

data fields. A single rule, not shown here, drives the review and renaming that completes

the definition of task interfaces.

224

